Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 240(3): e14100, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258357

ABSTRACT

AIM: Drastic diet interventions have been shown to promote rapid and significant compositional changes of the gut microbiota, but the impact of moderate diet variations is less clear. Here, we aimed to clarify the impact of moderate diet variations that remain within the spectrum of the habitual human diet on gut microbiota composition. METHODS: We performed a pilot diet intervention where five healthy volunteers consumed a vegetarian ready-made meal for three days to standardize dietary intake before switching to a meat-based ready-made western-style meal and high sugar drink for two days. We performed 16S rRNA sequencing from daily fecal sampling to assess gut microbiota changes caused by the intervention diet. Furthermore, we used the volunteers' fecal samples to colonize germ-free mice that were fed the same sterilized diets to study the effect of a moderate diet intervention on the gut microbiota in a setting of reduced interindividual variation. RESULTS: In the human intervention, we found that fecal microbiota composition varied between and within individuals regardless of diet. However, when we fed the same diets to mice colonized with the study participants' feces, we observed significant, often donor-specific, changes in the mouse microbiota following this moderate diet intervention. CONCLUSION: Moderate variations in the habitual human diet have the potential to alter the gut microbiota. Feeding humanized mice human diets may facilitate our understanding of individual human gut microbiota responses to moderate dietary changes and help improve individualized interventions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Mice , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Diet , Feces
2.
Nat Commun ; 14(1): 5329, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658064

ABSTRACT

Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Microbiota , Humans , Male , Animals , Mice , Fatty Acids , Bile Acids and Salts , Dietary Fats
3.
Gut ; 72(2): 314-324, 2023 02.
Article in English | MEDLINE | ID: mdl-35697422

ABSTRACT

OBJECTIVE: Dietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet. DESIGN: To assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose. In addition, we used germ-free mice and in vitro cultures to evaluate the activity of bacteria to transform bile acids in the caecal content of mice fed with western-style diet enriched with oligofructose. Finally, we treated wild-type and TGR5 knockout mice orally with hyodeoxycholic acid to assess its antidiabetic effects. RESULTS: We show that oligofructose sustains the production of 6α-hydroxylated bile acids from primary bile acids by gut bacteria when fed western-style diet. Mechanistically, we demonstrated that the effects of oligofructose on 6α-hydroxylated bile acids were microbiota dependent and specifically required functional TGR5 signalling to reduce body weight gain and improve glucose metabolism. Furthermore, we show that the 6α-hydroxylated bile acid hyodeoxycholic acid stimulates TGR5 signalling, in vitro and in vivo, and increases GLP-1R activity to improve host glucose metabolism. CONCLUSION: Modulation of the gut microbiota with oligofructose enriches bacteria involved in 6α-hydroxylated bile acid production and leads to TGR5-GLP1R axis activation to improve body weight and metabolism under western-style diet feeding in mice.


Subject(s)
Bile Acids and Salts , Diet, Western , Dietary Fiber , Dietary Supplements , Gastrointestinal Microbiome , Glucose , Receptors, G-Protein-Coupled , Animals , Mice , Bile Acids and Salts/metabolism , Body Weight , Glucose/metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Dietary Fiber/administration & dosage
4.
Microbiologyopen ; 11(5): e1320, 2022 10.
Article in English | MEDLINE | ID: mdl-36314747

ABSTRACT

BACKGROUND: Surface raw water used as a source for drinking water production is a critical resource, sensitive to contamination. We conducted a study on Swedish raw water sources, aiming to identify mutually co-occurring metacommunities of bacteria, and environmental factors driving such patterns. METHODS: The water sources were different regarding nutrient composition, water quality, and climate characteristics, and displayed various degrees of anthropogenic impact. Water inlet samples were collected at six drinking water treatment plants over 3 years, totaling 230 samples. The bacterial communities of DNA sequenced samples (n = 175), obtained by 16S metabarcoding, were analyzed using a joint model for taxa abundance. RESULTS: Two major groups of well-defined metacommunities of microorganisms were identified, in addition to a third, less distinct, and taxonomically more diverse group. These three metacommunities showed various associations to the measured environmental data. Predictions for the well-defined metacommunities revealed differing sets of favored metabolic pathways and life strategies. In one community, taxa with methanogenic metabolism were common, while a second community was dominated by taxa with carbohydrate and lipid-focused metabolism. CONCLUSION: The identification of ubiquitous persistent co-occurring bacterial metacommunities in freshwater habitats could potentially facilitate microbial source tracking analysis of contamination issues in freshwater sources.


Subject(s)
Drinking Water , Sweden , Bacteria/genetics , Fresh Water/microbiology , Ecosystem , RNA, Ribosomal, 16S/genetics
5.
Bioinformatics ; 37(9): 1312-1314, 2021 06 09.
Article in English | MEDLINE | ID: mdl-32956448

ABSTRACT

SUMMARY: Analysis of conservation of gene neighbourhoods over different evolutionary levels is important for understanding operon and gene cluster evolution, and predicting functional associations. Our tool FlaGs (standing for Flanking Genes) takes a list of NCBI protein accessions as input, clusters neighbourhood-encoded proteins into homologous groups using sensitive sequence searching, and outputs a graphical visualization of the gene neighbourhood and its conservation, along with a phylogenetic tree annotated with flanking gene conservation. FlaGs has demonstrated utility for molecular evolutionary analysis, having uncovered a new toxin-antitoxin system in prokaryotes and bacteriophages. The web tool version of FlaGs (webFlaGs) can optionally include a BLASTP search against a reduced RefSeq database to generate an input accession list and analyse neighbourhood conservation within the same run. AVAILABILITY AND IMPLEMENTATION: FlaGs can be downloaded from https://github.com/GCA-VH-lab/FlaGs or run online at http://www.webflags.se/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Biology , Evolution, Molecular , Phylogeny
6.
J Am Heart Assoc ; 9(18): e016518, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32893710

ABSTRACT

Background A vegetarian diet (VD) may reduce future cardiovascular risk in patients with ischemic heart disease. Methods and Results A randomized crossover study was conducted in subjects with ischemic heart disease, assigned to 4-week intervention periods of isocaloric VD and meat diet (MD) with individually designed diet plans, separated by a 4-week washout period. The primary outcome was difference in oxidized low-density lipoprotein cholesterol (LDL-C) between diets. Secondary outcomes were differences in cardiometabolic risk factors, quality of life, gut microbiota, fecal short-chain and branched-chain fatty acids, and plasma metabolome. Of 150 eligible patients, 31 (21%) agreed to participate, and 27 (87%) participants completed the study. Mean oxidized LDL-C (-2.73 U/L), total cholesterol (-5.03 mg/dL), LDL-C (-3.87 mg/dL), and body weight (-0.67 kg) were significantly lower with the VD than with the MD. Differences between VD and MD were observed in the relative abundance of several microbe genera within the families Ruminococcaceae, Lachnospiraceae, and Akkermansiaceae. Plasma metabolites, including l-carnitine, acylcarnitine metabolites, and phospholipids, differed in subjects consuming VD and MD. The effect on oxidized LDL-C in response to the VD was associated with a baseline gut microbiota composition dominated by several genera of Ruminococcaceae. Conclusions The VD in conjunction with optimal medical therapy reduced levels of oxidized LDL-C, improved cardiometabolic risk factors, and altered the relative abundance of gut microbes and plasma metabolites in patients with ischemic heart disease. Our results suggest that composition of the gut microbiota at baseline may be related to the reduction of oxidized LDL-C observed with the VD. Registration URL: https://www.clini​caltr​ials.gov; Unique identifier: NCT02942628.


Subject(s)
Cardiometabolic Risk Factors , Diet, Vegetarian , Gastrointestinal Microbiome , Metabolome , Myocardial Ischemia/diet therapy , Aged , Cholesterol, LDL/blood , Cross-Over Studies , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Myocardial Ischemia/blood
7.
PLoS One ; 15(1): e0227434, 2020.
Article in English | MEDLINE | ID: mdl-31945086

ABSTRACT

Microbial amplicon sequencing studies are an important tool in biological and biomedical research. Widespread 16S rRNA gene microbial surveys have shed light on the structure of many ecosystems inhabited by bacteria, including the human body. However, specialized software and algorithms are needed to convert raw sequencing data into biologically meaningful information (i.e. tables of bacterial counts). While different bioinformatic pipelines are available in a rapidly changing and improving field, users are often unaware of limitations and biases associated with individual pipelines and there is a lack of agreement regarding best practices. Here, we compared six bioinformatic pipelines for the analysis of amplicon sequence data: three OTU-level flows (QIIME-uclust, MOTHUR, and USEARCH-UPARSE) and three ASV-level (DADA2, Qiime2-Deblur, and USEARCH-UNOISE3). We tested workflows with different quality control options, clustering algorithms, and cutoff parameters on a mock community as well as on a large (N = 2170) recently published fecal sample dataset from the multi-ethnic HELIUS study. We assessed the sensitivity, specificity, and degree of consensus of the different outputs. DADA2 offered the best sensitivity, at the expense of decreased specificity compared to USEARCH-UNOISE3 and Qiime2-Deblur. USEARCH-UNOISE3 showed the best balance between resolution and specificity. OTU-level USEARCH-UPARSE and MOTHUR performed well, but with lower specificity than ASV-level pipelines. QIIME-uclust produced large number of spurious OTUs as well as inflated alpha-diversity measures and should be avoided in future studies. This study provides guidance for researchers using amplicon sequencing to gain biological insights.


Subject(s)
Bacteria/genetics , Computational Biology/methods , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA/methods , Software , Algorithms , DNA, Bacterial/genetics , Datasets as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...